Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xuelian Xu, ${ }^{\text {a }}$ Alan R. Kennedy, ${ }^{\mathbf{b}_{*}}$

Alastair J. Florence ${ }^{\mathrm{a}}$ and Norman Shankland ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and ${ }^{\mathbf{b}}$ Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland

Correspondence e-mail:
a.r.kennedy@strath.ac.uk

Key indicators

Single-crystal X-ray study
$T=123 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.035$
$w R$ factor $=0.086$
Data-to-parameter ratio $=17.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Chlorobenzoic acid N, N-dimethylformamide solvate

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClO}_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, the carboxylic acid group of 4-chlorobenzoic acid is hydrogen bonded to a molecule of N, N-dimethylformamide via an $R_{2}^{2}(7) \mathrm{O}-\mathrm{H} \cdots \mathrm{O} /$ $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ motif. This motif takes precedence over the $R_{2}^{2}(8)$ $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ dimer arrangement observed in 4-chlorobenzoic acid itself.

Comment

4-Chlorobenzoic acid (CBA) crystallizes as hydrogen-bonded $R_{2}^{2}(8) \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ dimers and dynamic proton transfer within the hydrogen bonds mediates the interconversion of two inequivalent dimeric forms (Horsewill et al., 2003; Wilson et al., 2004).

(I)

The title compound, (I), was crystallized to determine whether the $R_{2}^{2}(8)$ motif, and the proton-transfer process, is preserved in the solvate (Fig. 1). Significant deviations from idealized aromatic geometry in the CBA molecule of (I) include a marked widening of the internal ring angle at C 4 [122.26 (12) ${ }^{\circ}$] and a concomitant narrowing of the angles ortho to this at $\mathrm{C} 3\left[118.25(12)^{\circ}\right]$ and $\mathrm{C} 5\left[118.81(13)^{\circ}\right]$. Utilizing the angular substituent parameters for Cl and COOH (Domenicano, 1992), the corresponding predicted internal ring angles of $122.1(\mathrm{C} 4)$ and 118.7° (C3 and C5) are in good agreement with the observed values. Thus, it may be concluded that the distortions from ideal $s p^{2}$ ring geometry are in line with expectations based on Domenicano's assessment of structural substituent effects in benzene derivatives. The $R_{2}^{2}(8)$ motif in CBA [Fig. 2, top, determined from single-crystal neutron diffraction data at 100 K (Wilson et al., 2004)] is not preserved in (I). Instead, one CBA molecule is replaced by one molecule of N, N-dimethylformamide (DMF), forming an $R_{2}{ }^{2}(7) \mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O} / \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ motif (Fig. 2, bottom), eliminating the possibility of a concerted two-proton transfer process. This interaction with DMF is not unexpected, as the $R_{2}^{2}(7)$ motif has been observed to recur with a reasonable frequency in the DMF solvates of carboxylic acids (Dale \& Elsegood, 2004).

Experimental

A single-crystal sample of the title compound was recrystallized from DMF solution by slow evaporation at room temperature.

Received 17 September 2004 Accepted 30 September 2004 Online 9 October 2004

Figure 1
The molecular structure of (I), shown with 50% probability displacement ellipsoids.

Figure 2
Top: the $R_{2}^{2}(8)$ motif in CBA, with $\mathrm{O} \cdots \mathrm{O}=2.588(3) \AA, \mathrm{O}-\mathrm{H}=$ 0.997 (6) \AA and $\mathrm{H} \cdots \mathrm{O}=1.595$ (6) \AA. Bottom: the $R_{2}^{2}(7)$ motif in (I), with $\mathrm{O} \cdots \mathrm{O}=2.5752(14) \AA, \mathrm{O}-\mathrm{H}=0.92$ (2) $\AA,(\mathrm{O}) \mathrm{H} \cdots \mathrm{O}=1.66$ (2) \AA and $(\mathrm{C}-) \mathrm{H} \cdots \mathrm{O}=2.716$ (14) \AA.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClO}_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$	$D_{x}=1.383 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=229.66$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{\AA} / c$	Cell parameters from 2512
$a=6.1269(2) \AA$	reflections
$b=14.6159(5) \AA$	$\theta=1.0-27.5^{\circ}$
$c=12.6541(4) \AA$	$\mu=0.33 \mathrm{~mm}^{-1}$
$\beta=103.228(2)^{\circ}$	$T=123(2) \mathrm{K}$
$V=1103.11(6) \AA^{3}$	Cut fragment, colourless
$Z=4$	$0.50 \times 0.45 \times 0.40 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer	$R_{\text {int }}=0.033$
φ and ω scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: none	$h=-7 \rightarrow 7$
10331 measured reflections	$k=-18 \rightarrow 18$
2488 independent reflections	$l=-16 \rightarrow 16$
2049 reflections with $I>2 \sigma(I)$	
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0339 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$	$+0.445 P]$
$w R\left(F^{2}\right)=0.086$	where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=1.02$	$(\Delta / \sigma)_{\max }<0.001$
2488 reflections	$\Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3}$
146 parameters	$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$

H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 7$	$1.3257(16)$	$\mathrm{O} 3-\mathrm{C} 8$	$1.2400(16)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.2149(16)$		
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$119.67(12)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$120.25(12)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.76(12)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 1$	$123.90(12)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$118.25(12)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 1$	$123.13(12)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$122.26(12)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	$112.97(11)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$118.81(13)$		

The H atoms involved in hydrogen bonding were located in a difference map and refined isotropically, but all other H atoms were constrained to idealized geometry with a riding model: for CH_{3}, $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H}=0.98 \AA$; for $\mathrm{CH}, U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H}=0.95 \AA$.

Data collection: DENZO (Hooft, 1988) and COLLECT (Otwinowski \& Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

References

Dale, S. H. \& Elsegood, M. R. J. (2004). Acta Cryst. C60, o444-o448.
Domenicano, A. (1992). Accurate Molecular Structures, edited by A. Domenicano and I. Hargittai, pp. 437-468. Oxford University Press.
Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.
Horsewill, A. J., McGloin, C. J., Trommsdorff, H. P. \& Johnson, M. R. (2003). Chem. Phys. 291, 41-52.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wilson, C. C., Florence, A. J., Xu, X. \& Shankland, N. (2004). Unpublished results.

