Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Xuelian Xu, Alan R. Kennedy, b* Alastair J. Florence^a and Norman Shanklanda

^aDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and ^bDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland

Correspondence e-mail: a.r.kennedy@strath.ac.uk

Key indicators

Single-crystal X-ray study T = 123 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.035 wR factor = 0.086 Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-Chlorobenzoic acid N,N-dimethylformamide solvate

In the title compound, C₇H₅ClO₂.C₃H₇NO, the carboxylic acid group of 4-chlorobenzoic acid is hydrogen bonded to a molecule of N,N-dimethylformamide via an $R_2^2(7)$ O-H $\cdot\cdot\cdot$ O/ $C-H \cdot \cdot \cdot O$ motif. This motif takes precedence over the $R_2^2(8)$ O-H···O dimer arrangement observed in 4-chlorobenzoic acid itself.

Received 17 September 2004 Accepted 30 September 2004 Online 9 October 2004

Comment

4-Chlorobenzoic acid (CBA) crystallizes as hydrogen-bonded $R_2^2(8)$ O $-H \cdot \cdot \cdot$ O dimers and dynamic proton transfer within the hydrogen bonds mediates the interconversion of two inequivalent dimeric forms (Horsewill et al., 2003; Wilson et al., 2004).

$$CI$$
 OH C_3H_7NO

The title compound, (I), was crystallized to determine whether the $R_2^2(8)$ motif, and the proton-transfer process, is preserved in the solvate (Fig. 1). Significant deviations from idealized aromatic geometry in the CBA molecule of (I) include a marked widening of the internal ring angle at C4 [122.26 (12)°] and a concomitant narrowing of the angles *ortho* to this at C3 [118.25 (12)°] and C5 [118.81 (13)°]. Utilizing the angular substituent parameters for Cl and COOH (Domenicano, 1992), the corresponding predicted internal ring angles of 122.1 (C4) and 118.7° (C3 and C5) are in good agreement with the observed values. Thus, it may be concluded that the distortions from ideal sp^2 ring geometry are in line with expectations based on Domenicano's assessment of structural substituent effects in benzene derivatives. The $R_2^2(8)$ motif in CBA [Fig. 2, top, determined from single-crystal neutron diffraction data at 100 K (Wilson et al., 2004)] is not preserved in (I). Instead, one CBA molecule is replaced by one molecule of N,N-dimethylformamide (DMF), forming an $R_2^2(7)$ O— H···O/C−H···O motif (Fig. 2, bottom), eliminating the possibility of a concerted two-proton transfer process. This interaction with DMF is not unexpected, as the $R_2^2(7)$ motif has been observed to recur with a reasonable frequency in the DMF solvates of carboxylic acids (Dale & Elsegood, 2004).

Experimental

A single-crystal sample of the title compound was recrystallized from DMF solution by slow evaporation at room temperature.

doi: 10.1107/S1600536804024511

© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

01950

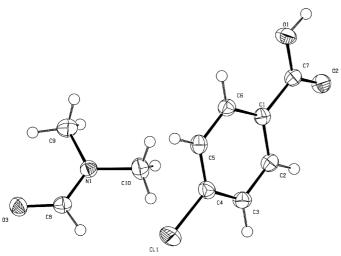


Figure 1 The molecular structure of (I), shown with 50% probability displacement ellipsoids.

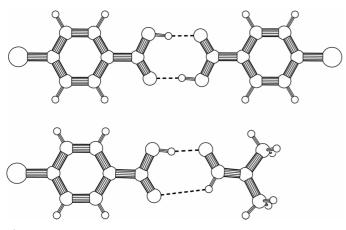


Figure 2 Top: the $R_2^2(8)$ motif in CBA, with $O \cdot \cdot \cdot O = 2.588(3) \text{ Å}$, O-H =0.997 (6) Å and H···O = 1.595 (6) Å. Bottom: the $R_2^2(7)$ motif in (I), with $O \cdot \cdot \cdot O = 2.5752$ (14) Å, O - H = 0.92 (2) Å, $O \cdot H \cdot \cdot \cdot O = 1.66$ (2) Å and $(C-)H \cdot \cdot \cdot O = 2.716 (14) \text{ Å}.$

Crystal data

C7H5ClO2·C3H7NO $D_x = 1.383 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $M_r = 229.66$ Cell parameters from 2512 Monoclinic, $P2_1/c$ a = 6.1269 (2) Åreflections b = 14.6159 (5) Å $\theta = 1.0-27.5^{\circ}$ $\mu=0.33~\mathrm{mm}^{-1}$ c = 12.6541 (4) Å $\beta = 103.228 (2)^{\circ}$ T = 123 (2) K $V = 1103.11 (6) \text{ Å}^3$ Cut fragment, colourless $0.50 \times 0.45 \times 0.40 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	$R_{\rm int} = 0.033$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}$
Absorption correction: none	$h = -7 \rightarrow 7$
10331 measured reflections	$k = -18 \rightarrow 18$
2488 independent reflections	$l = -16 \rightarrow 16$
2049 reflections with $I > 2\sigma(I)$	

Refinement

refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0339P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.035$	+ 0.445P]
$wR(F^2) = 0.086$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
2488 reflections	$\Delta \rho_{\text{max}} = 0.26 \text{ e Å}^{-3}$
146 parameters	$\Delta \rho_{\min} = -0.31 \text{ e Å}^{-3}$
H atoms treated by a mixture of	
independent and constrained	

Table 1 Selected geometric parameters (Å, °).

O1-C7 O2-C7	1.3257 (16) 1.2149 (16)	O3-C8	1.2400 (16)
C6-C1-C2 C3-C2-C1 C2-C3-C4 C5-C4-C3	119.67 (12) 120.76 (12) 118.25 (12) 122.26 (12)	C5-C6-C1 O2-C7-O1 O2-C7-C1 O1-C7-C1	120.25 (12) 123.90 (12) 123.13 (12) 112.97 (11)
C4-C5-C6	118.81 (13)		

The H atoms involved in hydrogen bonding were located in a difference map and refined isotropically, but all other H atoms were constrained to idealized geometry with a riding model: for CH₃, $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C})$ and ${\rm C-H} = 0.98 \, {\rm \mathring{A}};$ for CH, $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ and C-H = 0.95 Å.

Data collection: DENZO (Hooft, 1988) and COLLECT (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

References

Dale, S. H. & Elsegood, M. R. J. (2004). Acta Cryst. C60, o444-o448. Domenicano, A. (1992). Accurate Molecular Structures, edited by A. Domenicano and I. Hargittai, pp. 437-468. Oxford University Press. Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.

Horsewill, A. J., McGloin, C. J., Trommsdorff, H. P. & Johnson, M. R. (2003).

Chem. Phys. 291, 41-52.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Wilson, C. C., Florence, A. J., Xu, X. & Shankland, N. (2004). Unpublished results.